MiR-145 Inhibits Metastasis by Targeting Fascin Actin-Bundling Protein 1 in Nasopharyngeal Carcinoma
نویسندگان
چکیده
BACKGROUND Based on our recent microarray analysis, we found that miR-145 was obviously downregulated in nasopharyngeal carcinoma (NPC) tissues. However, little is known about its function and mechanism involving in NPC development and progression. METHODS Quantitative RT-PCR was used to detect miR-145 expression in NPC cell lines and clinical samples. Wound healing, Transwell migration and invasion, three-dimension spheroid invasion assays, and lung metastasis model were performed to test the migratory, invasive, and metastatic ability of NPC cells. Luciferase reporter assay, quantitative RT-PCR, and Western blotting were used to verify the target of miR-145. RESULTS MiR-145 was obviously decreased in NPC cell lines and clinical samples (P<0.01). Ectopic overexpression of miR-145 significantly inhibited the migratory and invasive ability of SUNE-1 and CNE-2 cells. In addition, stably overexpressing of miR-145 in SUNE-1 cells could remarkably restrain the formation of metastatic nodes in the lungs of mice. Furthermore, fascin actin-bundling protein 1 (FSCN1) was verified as a target of miR-145, and silencing FSCN1 with small RNA interfering RNA could suppress NPC cell migration and invasion. CONCLUSIONS Our findings demonstrated that miR-145 function as a tumor suppressor in NPC development and progression via targeting FSCN1, which could sever as a potential novel therapeutic target for patients with NPC.
منابع مشابه
Dual actin-bundling and protein kinase C-binding activities of fascin regulate carcinoma cell migration downstream of Rac and contribute to metastasis.
Recurrence of carcinomas due to cells that migrate away from the primary tumor is a major problem in cancer treatment. Immunohistochemical analyses of human carcinomas have consistently correlated up-regulation of the actin-bundling protein fascin with a clinically aggressive phenotype and poor prognosis. To understand the functional and mechanistic contributions of fascin, we undertook inducib...
متن کاملMicroRNA-145 inhibits migration and invasion by down-regulating FSCN1 in lung cancer.
BACKGROUND The extraordinary invasive capability is a major cause of treatment failure and tumor recurrence in lung cancer. Evidence in other cell systems has implicated the regulatory role of microRNA-145 in cell motility and invasion, which promotes us to investigate the biological functions of miR-145 in lung cancer in this regard. RESULTS We have found that miR-145 is dramatically down-re...
متن کاملStrong fascin expression promotes metastasis independent of its F-actin bundling activity
High expression of the actin bundling protein Fascin increases the malignancy of tumor cells. Here we show that fascin expression is up-regulated in more malignant sub-cell lines of MDA-MB-231 cells as compared to parental cells. Since also parental MDA-MB-231 cells exhibit high fascin levels, increased fascin expression was termed as "hyperexpression". To examine the effect of fascin hyperexpr...
متن کاملThe potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L
Nasopharyngeal carcinoma (NPC) is a malignancy with poor prognosis that is endemic to Southeast Asia. We profiled microRNAs (miRNAs) of NPCs using microarrays and confirmed the results by quantitative RT-PCR. The results revealed that seven miRNAs were significantly up-regulated, and six miRNAs were down-regulated, in NPC tissues relative to noncancerous nasopharyngeal epithelia (NNE). Expressi...
متن کاملRestoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression, primarily at the post-transcriptional level. Growing evidence suggests that miRNAs function as oncogenes or tumor suppressors in human cancers. The down-regulation of miR-145 has been reported in many types of human cancer, including prostate cancer (PC), suggesting that miR-145 functions as a tumor suppressor. Using th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015